Antibody drug conjugate: the “biological missile” for targeted cancer therapy (2024)

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article PubMed Google Scholar

  2. Loadman, P. Anticancer drug development. Br. J. Cancer 86, 1665–1666 (2002).

    Article PubMed Central Google Scholar

  3. Gilman, A. & Philips, F. S. The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides. Science 103, 409–436 (1946).

    Article CAS PubMed Google Scholar

  4. Heidelberger, C. et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179, 663–666 (1957).

    Article CAS PubMed Google Scholar

  5. Norris, R. E. & Adamson, P. C. Clinical potency of methotrexate, aminopterin, talotrexin and pemetrexed in childhood leukemias. Cancer Chemother. Pharmacol. 65, 1125–1130 (2010).

    Article CAS PubMed Google Scholar

  6. Rosenberg, B., Van Camp, L. & Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205, 698–699 (1965).

    Article CAS PubMed Google Scholar

  7. Rowinsky, E. K. & Donehower, R. C. Pacl*taxel (taxol). N. Engl. J. Med. 332, 1004–1014 (1995).

    Article CAS PubMed Google Scholar

  8. Lindley, C. et al. Perception of chemotherapy side effects cancer versus noncancer patients. Cancer Pract. 7, 59–65 (1999).

    Article CAS PubMed Google Scholar

  9. Strebhardt, K. & Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473–480 (2008).

    Article CAS PubMed Google Scholar

  10. Iqbal, N. & Iqbal, N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol. Biol. Int. 2014, 852748 (2014).

    Article PubMed PubMed Central Google Scholar

  11. Prevodnik, V. K., Lavrenčak, J., Horvat, M. & Novakovič, B. J. The predictive significance of CD20 expression in B-cell lymphomas. Diagn. Pathol. 6, 1–6 (2011).

    Article Google Scholar

  12. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article PubMed Google Scholar

  13. Ferrara, N., Hillan, K. J. & Novotny, W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun. 333, 328–335 (2005).

    Article CAS PubMed Google Scholar

  14. McKeage, K. & Perry, C. M. Trastuzumab. Drugs 62, 209–243 (2002).

    Article CAS PubMed Google Scholar

  15. Plosker, G. L. & Figgitt, D. P. Rituximab. Drugs 63, 803–843 (2003).

    Article CAS PubMed Google Scholar

  16. Blick, S. K. & Scott, L. J. Cetuximab. Drugs 67, 2585–2607 (2007).

    Article CAS PubMed Google Scholar

  17. Shefet-Carasso, L. & Benhar, I. Antibody-targeted drugs and drug resistance—challenges and solutions. Drug Resist. Updat. 18, 36–46 (2015).

    Article PubMed Google Scholar

  18. Sievers, E. L. & Senter, P. D. Antibody-drug conjugates in cancer therapy. Annu. Rev. Med. 64, 15–29 (2013).

    Article CAS PubMed Google Scholar

  19. Lambert, J. M. & Berkenblit, A. Antibody–drug conjugates for cancer treatment. Annu. Rev. Med. 69, 191–207 (2018).

    Article CAS PubMed Google Scholar

  20. Norsworthy, K. J. et al. FDA approval summary: mylotarg for treatment of patients with relapsed or refractory CD33‐positive acute myeloid leukemia. Oncologist 23, 1103 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  21. Ethan Ennals For The Mail On Sunday. New breed of drug which reduces bladder cancer deaths could replace chemotherapy in other cases. At dailymail.co.uk (2021).

  22. Damelin, M., Zhong, W., Myers, J. & Sapra, P. Evolving strategies for target selection for antibody-drug conjugates. Pharm. Res. 32, 3494–3507 (2015).

    Article CAS PubMed Google Scholar

  23. Diamantis, N. & Banerji, U. Antibody-drug conjugates—an emerging class of cancer treatment. Br. J. Cancer 114, 362–367 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  24. Ritchie, M., Tchistiakova, L. & Scott, N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. MAbs 5, 13–21 (2013).

    Article PubMed PubMed Central Google Scholar

  25. Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 8, 659–671 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  26. Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article CAS PubMed Google Scholar

  27. Xiao, Y. & Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 221, 107753 (2020).

    Article PubMed Google Scholar

  28. Rummel, S. et al. Genomic (in) stability of the breast tumor microenvironment. Mol. Cancer Res. 10, 1526–1531 (2012).

    Article CAS PubMed Google Scholar

  29. De Cecco, M., Galbraith, D. N. & McDermott, L. L. What makes a good antibody-drug conjugate? Expert Opin. Biol. Ther. 21, 1–7 (2021).

    Article Google Scholar

  30. Hock, M. B., Thudium, K. E., Carrasco-Triguero, M. & Schwabe, N. F. Immunogenicity of antibody drug conjugates: bioanalytical methods and monitoring strategy for a novel therapeutic modality. AAPS J. 17, 35–43 (2015).

    Article CAS PubMed Google Scholar

  31. Abdollahpour‐Alitappeh, M. et al. Antibody–drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J. Cell. Physiol. 234, 5628–5642 (2019).

    Article PubMed Google Scholar

  32. Natsume, A., Niwa, R. & Satoh, M. Improving effector functions of antibodies for cancer treatment: enhancing ADCC and CDC. Drug Des. Devel. Ther. 3, 7 (2009).

    CAS PubMed PubMed Central Google Scholar

  33. Stapleton, N. M. et al. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat. Commun. 2, 1–9 (2011).

    Article Google Scholar

  34. Zhang, J. et al. Structural changes and aggregation mechanisms of two different dimers of an IgG2 monoclonal antibody. Biochemistry 57, 5466–5479 (2018).

    Article CAS PubMed Google Scholar

  35. Spiess, C. et al. Development of a human IgG4 bispecific antibody for dual targeting of interleukin-4 (IL-4) and interleukin-13 (IL-13) cytokines. J. Biol. Chem. 288, 26583–26593 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  36. Rispens, T., Ooijevaar-de Heer, P., Bende, O. & Aalberse, R. C. Mechanism of immunoglobulin G4 Fab-arm exchange. J. Am. Chem. Soc. 133, 10302–10311 (2011).

    Article CAS PubMed Google Scholar

  37. Xu, S. Internalization, trafficking, intracellular processing and actions of antibody-drug conjugates. Pharm. Res. 32, 3577–3583 (2015).

    Article CAS PubMed Google Scholar

  38. Singh, A. P. et al. Antibody coadministration as a strategy to overcome binding-site barrier for ADCs: a quantitative investigation. AAPS J. 22, 1–13 (2020).

    Article Google Scholar

  39. Tsumura, R. et al. Influence of the dissociation rate constant on the intra-tumor distribution of antibody-drug conjugate against tissue factor. J. Control. Release 284, 49–56 (2018).

    Article CAS PubMed Google Scholar

  40. Saunders, K. O. Conceptual approaches to modulating antibody effector functions and circulation half-life. Front. Immunol. 10, 1296 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  41. Bargh, J. D., Isidro-Llobet, A., Parker, J. S. & Spring, D. R. Cleavable linkers in antibody–drug conjugates. Chem. Soc. Rev. 48, 4361–4374 (2019).

    Article CAS PubMed Google Scholar

  42. Nolting, B. Linker technologies for antibody-drug conjugates. Methods Mol. Biol. 1045, 71–100 (2013).

    Article PubMed Google Scholar

  43. Flygare, J. A., Pillow, T. H. & Aristoff, P. Antibody‐drug conjugates for the treatment of cancer. Chem. Biol. Drug Des. 81, 113–121 (2013).

    Article CAS PubMed Google Scholar

  44. Zhang, D. et al. Catalytic cleavage of disulfide bonds in small molecules and linkers of antibody–drug conjugates. Drug Metab. Disposition 47, 1156–1163 (2019).

    Article CAS Google Scholar

  45. Pallardó, F. V., Markovic, J., García, J. L. & Viña, J. Role of nuclear glutathione as a key regulator of cell proliferation. Mol. Asp. Med. 30, 77–85 (2009).

    Article Google Scholar

  46. Estrela, J. M., Ortega, A. & Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 43, 143–181 (2006).

    Article CAS PubMed Google Scholar

  47. Doronina, S. O. et al. Novel peptide linkers for highly potent antibody− auristatin conjugate. Bioconjug. Chem. 19, 1960–1963 (2008).

    Article CAS PubMed Google Scholar

  48. Gondi, C. S. & Rao, J. S. Cathepsin B as a cancer target. Expert Opin. Ther. Targets 17, 281–291 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  49. Dubowchik, G. M. et al. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug. Chem. 13, 855–869 (2002).

    Article CAS PubMed Google Scholar

  50. Jeffrey, S. C. et al. Minor groove binder antibody conjugates employing a water soluble β-glucuronide linker. Bioorg. Med. Chem. Lett. 17, 2278–2280 (2007).

    Article CAS PubMed Google Scholar

  51. Kovtun, Y. V. et al. Antibody-drug conjugates designed to eradicate tumors with hom*ogeneous and heterogeneous expression of the target antigen. Cancer Res. 66, 3214–3221 (2006).

    Article CAS PubMed Google Scholar

  52. Oflazoglu, E. et al. Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin. Cancer Res. 14, 6171–6180 (2008).

    Article CAS PubMed Google Scholar

  53. Erickson, H. K. et al. Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody− maytansinoid conjugates. Bioconjug. Chem. 21, 84–92 (2010).

    Article CAS PubMed Google Scholar

  54. Girish, S. et al. Clinical pharmacology of trastuzumab emtansine (T-DM1): an antibody–drug conjugate in development for the treatment of HER2-positive cancer. Cancer Chemother. Pharmacol. 69, 1229–1240 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  55. Phillips, G. D. L. et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody–cytotoxic drug conjugate. Cancer Res. 68, 9280–9290 (2008).

    Article Google Scholar

  56. Zhao, P. et al. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm. Sin. B 10, 1589–1600 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  57. Birrer, M. J., Moore, K. N., Betella, I. & Bates, R. C. Antibody-drug conjugate-based therapeutics: state of the science. J. Natl Cancer Inst. 111, 538–549 (2019).

    Article PubMed Google Scholar

  58. Yang, H., Ganguly, A. & Cabral, F. Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs. J. Biol. Chem. 285, 32242–32250 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  59. Kaur, R. et al. Recent developments in tubulin polymerization inhibitors: an overview. Eur. J. Med. Chem. 87, 89–124 (2014).

    Article CAS PubMed Google Scholar

  60. Walczak, C. E. Microtubule dynamics and tubulin interacting proteins. Curr. Opin. Cell Biol. 12, 52–56 (2000).

    Article CAS PubMed Google Scholar

  61. Koga, Y. et al. Antitumor effect of antitissue factor antibody‐MMAE conjugate in human pancreatic tumor xenografts. Int. J. Cancer 137, 1457–1466 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  62. Yao, X. et al. A novel humanized anti-HER2 antibody conjugated with MMAE exerts potent anti-tumor activity. Breast Cancer Res. Treat. 153, 123–133 (2015).

    Article CAS PubMed Google Scholar

  63. Lopus, M. Antibody-DM1 conjugates as cancer therapeutics. Cancer Lett. 307, 113–118 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  64. Sandmann, A., Sasse, F. & Müller, R. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem. Biol. 11, 1071–1079 (2004).

    Article CAS PubMed Google Scholar

  65. Morris, M. et al. Phase 1 study of the PSMA-targeted small-molecule drug conjugate EC1169 in patients with metastatic castrate-resistant prostate cancer (mCRPC). Ann. Oncol. 28, v273 (2017).

    Article Google Scholar

  66. Cheung-Ong, K., Giaever, G. & Nislow, C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem. Biol. 20, 648–659 (2013).

    Article CAS PubMed Google Scholar

  67. Elmroth, K. et al. Cleavage of cellular DNA by calicheamicin γ1. DNA Repair 2, 363–374 (2003).

    Article CAS PubMed Google Scholar

  68. Boger, D. L. The duocarmycins: synthetic and mechanistic studies. Acc. Chem. Res. 28, 20–29 (1995).

    Article CAS Google Scholar

  69. Pommier, Y. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem. Rev. 109, 2894–2902 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  70. Gregson, S. J. et al. Design, synthesis, and evaluation of a novel pyrrolobenzodiazepine DNA-interactive agent with highly efficient cross-linking ability and potent cytotoxicity. J. Med. Chem. 44, 737–748 (2001).

    Article CAS PubMed Google Scholar

  71. Zein, N., Sinha, A. M., McGahren, W. J. & Ellestad, G. A. Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240, 1198–1201 (1988).

    Article CAS PubMed Google Scholar

  72. Takahashi, I. et al. Duocarmycin A, a new antitumor antibiotic from Streptomyces. J. Antibiot. 41, 1915–1917 (1988).

    Article CAS Google Scholar

  73. Kawato, Y. et al. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 51, 4187–4191 (1991).

    CAS PubMed Google Scholar

  74. Meddahi, A. et al. FGF protection and inhibition of human neutrophil elastase by carboxymethyl benzylamide sulfonate dextran derivatives. Int. J. Biol. Macromol. 18, 141–145 (1996).

    Article CAS PubMed Google Scholar

  75. Gregson, S. J. et al. Pyrrolobenzodiazepine dimer antibody–drug conjugates: synthesis and evaluation of noncleavable drug-linkers. J. Med. Chem. 60, 9490–9507 (2017).

    Article CAS PubMed Google Scholar

  76. Kamal, A. et al. Design, synthesis, and evaluation of new noncross-linking pyrrolobenzodiazepine dimers with efficient DNA binding ability and potent antitumor activity. J. Med. Chem. 45, 4679–4688 (2002).

    Article CAS PubMed Google Scholar

  77. Lee, A. Loncastuximab tesirine: first approval. Drugs 81, 1229–1233 (2021).

    Article CAS PubMed Google Scholar

  78. Ackerman, S. E. et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat. Cancer 2, 18–33 (2021).

    Article CAS PubMed Google Scholar

  79. Qian, C. & Prieto, J. Gene therapy of cancer: induction of anti-tumor immunity. Cell. Mol. Immunol. 1, 105–111 (2004).

    CAS PubMed Google Scholar

  80. He, L. et al. Immune modulating antibody–drug conjugate (IM-ADC) for cancer immunotherapy. J. Med. Chem. 64, 15716–15726 (2021).

    Article CAS PubMed Google Scholar

  81. Bukhalid, R. A. et al. Systemic administration of STING agonist antibody-drug conjugates elicit potent anti-tumor immune responses with minimal induction of circulating cytokines. Cancer Res. 80, abstract 6706 (2020).

    Article Google Scholar

  82. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article CAS PubMed Google Scholar

  83. Dumbrava, E. I. et al. Abstract OT-03-02: Phase 1/2 study of a novel HER2 targeting TLR7/8 immune-stimulating antibody conjugate (ISAC), BDC-1001, as a single agent and in combination with an immune checkpoint inhibitor in patients with advanced HER2-expressing solid tumors. Cancer Res. 81, OT-03-02 (2021).

    Article Google Scholar

  84. Metz, H. et al. SBT6050, a HER2-directed TLR8 therapeutic, as a systemically administered, tumor-targeted human myeloid cell agonist. J. Clin. Oncol. 38, 3110–3110 (2020).

    Article Google Scholar

  85. Shi, F. et al. Activation of STING inhibits cervical cancer tumor growth through enhancing the anti-tumor immune response. Mol. Cell Biochem. 476, 1015–1024 (2021).

    Article CAS PubMed Google Scholar

  86. Amouzegar, A. et al. STING agonists as cancer therapeutics. Cancers (Basel) 13, 2695 (2021).

    Article CAS Google Scholar

  87. Duvall, J. R. et al. XMT-2056, a well-tolerated, Immunosynthen-based STING-agonist antibody-drug conjugate which induces anti-tumor immune activity. Cancer Res. 81, 1738–1738 (2021).

    Article Google Scholar

  88. Mallet, W. et al. 784 BDC-2034: discovery of a CEA-targeting immune-stimulating antibody conjugate (ISAC) for solid tumors. J. Immunother. Cancer 9, 784–784 (2021).

    Article Google Scholar

  89. Sharma, M. et al. 164P Preliminary results from a phase I/II study of BDC-1001, a novel HER2 targeting TLR7/8 immune-stimulating antibody conjugate (ISAC), in patients (pts) with advanced HER2-expressing solid tumors. Ann. Oncol. 32, S1453–S1454 (2021).

    Article Google Scholar

  90. Brun, M.-P. & Gauzy-Lazo, L. Protocols for lysine conjugation. Methods Mol. Biol. 1045, 173–187 (2013).

    Article PubMed Google Scholar

  91. Matsuda, Y. & Mendelsohn, B. A. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opin. Biol. Ther. 21, 963–975 (2021).

    Article CAS PubMed Google Scholar

  92. f*ckunaga, A. et al. Improvement of antibody affinity by introduction of basic amino acid residues into the framework region. Biochem. Biophys. Rep. 15, 81–85 (2018).

    PubMed PubMed Central Google Scholar

  93. Hagihara, Y. & Saerens, D. Engineering disulfide bonds within an antibody. BBA-Proteins Proteom. 1844, 2016–2023 (2014).

    Article CAS Google Scholar

  94. Gordon, M. R. et al. Field guide to challenges and opportunities in antibody–drug conjugates for chemists. Bioconjug. Chem. 26, 2198–2215 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  95. Nadkarni, D. V. Conjugations to endogenous cysteine residues. Methods Mol. Biol. 2078, 37–49 (2020).

    Article CAS PubMed Google Scholar

  96. Levengood, M. R. et al. Orthogonal cysteine protection enables hom*ogeneous multi‐drug antibody–drug conjugates. Angew. Chem. Int. Ed. 56, 733–737 (2017).

    Article CAS Google Scholar

  97. Strop, P. et al. Location matters: site of conjugation modulates stability and pharmaco*kinetics of antibody drug conjugates. Chem. Biol. 20, 161–167 (2013).

    Article CAS PubMed Google Scholar

  98. Shen, B.-Q. et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 30, 184–189 (2012).

    Article CAS PubMed Google Scholar

  99. Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).

    Article CAS PubMed Google Scholar

  100. Junutula, J. R. et al. Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2–positive breast cancer. Clin. Cancer Res. 16, 4769–4778 (2010).

    Article CAS PubMed Google Scholar

  101. Kung Sutherland, M. S. et al. SGN-CD33A: a novel CD33-targeting antibody–drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood 122, 1455–1463 (2013).

    Article PubMed Google Scholar

  102. Liberatore, F. A. et al. Site-directed chemical modification and crosslinking of a monoclonal antibody using equilibrium transfer alkylating crosslink reagents. Bioconjug. Chem. 1, 36–50 (1990).

    Article CAS PubMed Google Scholar

  103. Smith, M. E. et al. Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J. Am. Chem. Soc. 132, 1960–1965 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  104. Chudasama, V. et al. Bromopyridazinedione-mediated protein and peptide bioconjugation. Chem. Commun. 47, 8781–8783 (2011).

    Article CAS Google Scholar

  105. Schumacher, F. F. et al. Next generation maleimides enable the controlled assembly of antibody–drug conjugates via native disulfide bond bridging. Org. Biomol. Chem. 12, 7261–7269 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  106. Morais, M., Forte, N., Chudasama, V. & Baker, J. R. Application of next-generation maleimides (NGMs) to site-selective antibody conjugation. Bioconjugation. 2033, 15–24 (2019).

    Article CAS Google Scholar

  107. Forte, N., Chudasama, V. & Baker, J. R. hom*ogeneous antibody-drug conjugates via site-selective disulfide bridging. Drug Discov. Today.: Technol. 30, 11–20 (2018).

    Article Google Scholar

  108. Hallam, T. J., Wold, E., Wahl, A. & Smider, V. V. Antibody conjugates with unnatural amino acids. Mol. Pharm. 12, 1848–1862 (2015).

    Article CAS PubMed Google Scholar

  109. Zhou, Q. Site-specific antibody conjugation for ADC and beyond. Biomedicines 5, 64 (2017).

    Article PubMed Central Google Scholar

  110. Hallam, T. J. & Smider, V. V. Unnatural amino acids in novel antibody conjugates. Future Med. Chem. 6, 1309–1324 (2014).

    Article CAS PubMed Google Scholar

  111. Rao, C., Rangan, V. S. & Deshpande, S. Challenges in antibody–drug conjugate discovery: a bioconjugation and analytical perspective. Bioanalysis 7, 1561–1564 (2015).

    Article CAS PubMed Google Scholar

  112. Kim, E. G. & Kim, K. M. Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomol. Ther. 23, 493 (2015).

    Article CAS Google Scholar

  113. Agarwal, P. & Bertozzi, C. R. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem. 26, 176–192 (2015).

    Article CAS PubMed Google Scholar

  114. Subedi, G. P. & Barb, A. W. The structural role of antibody N-glycosylation in receptor interactions. Structure 23, 1573–1583 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  115. Walsh, S. J. et al. Site-selective modification strategies in antibody–drug conjugates. Chem. Soc. Rev. 50, 1305–1353 (2021).

    Article CAS PubMed Google Scholar

  116. Cao, Y. J. et al. Synthesis of precision antibody conjugates using proximity-induced chemistry. Theranostics 11, 9107 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  117. Adair, J. R. et al. Antibody–drug conjugates–a perfect synergy. Expert Opin. Biol. Ther. 12, 1191–1206 (2012).

    Article CAS PubMed Google Scholar

  118. Staudacher, A. H. & Brown, M. P. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br. J. Cancer 117, 1736–1742 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  119. Tai, Y.-T. et al. Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 123, 3128–3138 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  120. Radocha, J., van de Donk, N. W. & Weisel, K. Monoclonal antibodies and antibody drug conjugates in multiple myeloma. Cancers (Basel) 13, 1571 (2021).

    Article CAS Google Scholar

  121. Oostra, D. R. & Macrae, E. R. Role of trastuzumab emtansine in the treatment of HER2-positive breast cancer. Breast Cancer (Lond.) 6, 103 (2014).

    Google Scholar

  122. Dosio, F., Brusa, P. & Cattel, L. Immunotoxins and anticancer drug conjugate assemblies: the role of the linkage between components. Toxins (Basel) 3, 848–883 (2011).

    Article CAS Google Scholar

  123. Chari, R. V. Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy. Adv. Drug Del. Rev. 31, 89–104 (1998).

    Article CAS Google Scholar

  124. McGavin, J. K. & Spencer, C. M. Gemtuzumab ozogamicin. Drugs 61, 1317–1322 (2001).

    Article CAS PubMed Google Scholar

  125. Lamb, Y. N. Inotuzumab ozogamicin: first global approval. Drugs 77, 1603–1610 (2017).

    Article CAS PubMed Google Scholar

  126. Hinman, L. M. et al. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res. 53, 3336–3342 (1993).

    CAS PubMed Google Scholar

  127. Kaytor, M. D., Wilkinson, K. D. & Warren, S. T. Modulating huntingtin half‐life alters polyglutamine‐dependent aggregate formation and cell toxicity. J. Neurochem. 89, 962–973 (2004).

    Article CAS PubMed Google Scholar

  128. Siegel, M. M. et al. Calicheamicin derivatives conjugated to monoclonal antibodies: determination of loading values and distributions by infrared and UV matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization mass spectrometry. Anal. Chem. 69, 2716–2726 (1997).

    Article CAS PubMed Google Scholar

  129. Lucas, A. T. et al. Factors affecting the pharmacology of antibody–drug conjugates. Antibodies 7, 10 (2018).

    Article PubMed Central Google Scholar

  130. Strop, P. et al. Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat. Biotechnol. 33, 694–696 (2015).

    Article CAS PubMed Google Scholar

  131. Kamath, A. V. & Iyer, S. Preclinical pharmaco*kinetic considerations for the development of antibody drug conjugates. Pharm. Res. 32, 3470–3479 (2015).

    Article CAS PubMed Google Scholar

  132. Katz, J., Janik, J. E. & Younes, A. Brentuximab vedotin (SGN-35). Clin. Cancer Res. 17, 6428–6436 (2011).

    Article CAS PubMed Google Scholar

  133. Lambert, J. M. & Chari, R. V. Ado-trastuzumab Emtansine (T-DM1): an antibody–drug conjugate (ADC) for HER2-positive breast cancer. J. Medicinal Chem. 57, 6949–6964 (2014).

    Article CAS Google Scholar

  134. Tsuchikama, K. & An, Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 9, 33–46 (2018).

    Article CAS PubMed Google Scholar

  135. Sun, X. et al. Effects of drug–antibody ratio on pharmaco*kinetics, biodistribution, efficacy, and tolerability of antibody–maytansinoid conjugates. Bioconjug. Chem. 28, 1371–1381 (2017).

    Article CAS PubMed Google Scholar

  136. Lyon, R. P. et al. Reducing hydrophobicity of hom*ogeneous antibody-drug conjugates improves pharmaco*kinetics and therapeutic index. Nat. Biotechnol. 33, 733–735 (2015).

    Article CAS PubMed Google Scholar

  137. Burke, P. J. et al. Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody–drug conjugates. Mol. Cancer Ther. 16, 116–123 (2017).

    Article CAS PubMed Google Scholar

  138. Hoffmann, R. M. et al. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology 7, e1395127 (2018).

    Article PubMed Google Scholar

  139. Jäger, S. et al. Generation and biological evaluation of Fc antigen binding fragment-drug conjugates as a novel antibody-based format for targeted drug delivery. Bioconjug. Chem. 32, 1699–1710 (2021).

    Article PubMed Google Scholar

  140. Yurkovetskiy, A. V. et al. A polymer-based antibody–vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res. 75, 3365–3372 (2015).

    Article CAS PubMed Google Scholar

  141. Bodyak, N. et al. Trastuzumab-dolaflexin, a highly potent Fleximer-based antibody-drug conjugate, demonstrates a favorable therapeutic index in exploratory toxicology studies in multiple species. Cancer Res. 75, 641–641 (2015).

    Article Google Scholar

  142. Simmons, J. K. et al. Reducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylation. Toxicol. Appl. Pharmacol. 392, 114932 (2020).

    Article CAS PubMed Google Scholar

  143. Shao, T. et al. Construction of pacl*taxel-based antibody–drug conjugates with a PEGylated linker to achieve superior therapeutic index. Signal Transduct. Target. Ther. 5, 1–3 (2020).

    Article Google Scholar

  144. Buecheler, J. W. et al. Impact of payload hydrophobicity on the stability of antibody–drug conjugates. Mol. Pharm. 15, 2656–2664 (2018).

    Article CAS PubMed Google Scholar

  145. Bross, P. F. et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 7, 1490–1496 (2001).

    CAS PubMed Google Scholar

  146. Guglielmi, C. et al. Immunophenotype of adult and childhood acute promyelocytic leukaemia: correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 196 cases. Br. J. Haematol. 102, 1035–1041 (1998).

    Article CAS PubMed Google Scholar

  147. Parigger, J., Zwaan, C., Reinhardt, D. & Kaspers, G. Dose-related efficacy and toxicity of gemtuzumab ozogamicin in pediatric acute myeloid leukemia. Expert Rev. Anticancer Ther. 16, 137–146 (2016).

    Article CAS PubMed Google Scholar

  148. Petersdorf, S. et al. Preliminary results of Southwest Oncology Group study S0106: An international intergroup phase 3 randomized trial comparing the addition of Gemtuzumab ozogamicin to standard induction therapy versus standard induction therapy followed by a second randomization to post-consolidation Gemtuzumab ozogamicin versus no additional therapy for previously untreated acute myeloid leukemia. Blood 114, 790 (2009).

    Article Google Scholar

  149. Castaigne, S. et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 379, 1508–1516 (2012).

    Article CAS PubMed Google Scholar

  150. Amadori, S. et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J. Clin. Oncol. 34, 972–979 (2016).

    Article PubMed Google Scholar

  151. Burnett, A. K. et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J. Clin. Oncol. 29, 369–377 (2011).

    Article CAS PubMed Google Scholar

  152. Hills, R. K. et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 15, 986–996 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  153. Lamba, J. K. et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: report from randomized phase III Children’s Oncology Group trial AAML0531. J. Clin. Oncol. 35, 2674 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  154. Younes, A., Yasothan, U. & Kirkpatrick, P. Brentuximab vedotin. Nat. Rev. Drug Discov. 11, 19 (2012).

    Article CAS PubMed Google Scholar

  155. Hamblett, K. J. et al. SGN-35, an anti-CD30 antibody-drug conjugate, exhibits potent antitumor activity for the treatment of CD30+ malignancies. Blood 106, 610 (2005).

    Article Google Scholar

  156. Best, R. L. et al. Microtubule and tubulin binding and regulation of microtubule dynamics by the antibody drug conjugate (ADC) payload, monomethyl auristatin E (MMAE): Mechanistic insights into MMAE ADC peripheral neuropathy. Toxicol. Appl. Pharmacol. 421, 115534 (2021).

    Article CAS PubMed Google Scholar

  157. Bartlett, N. L. et al. A phase 2 study of brentuximab vedotin in patients with relapsed or refractory CD30-positive non-Hodgkin lymphomas: interim results in patients with DLBCL and other B-cell lymphomas. Blood 122, 848–848 (2013).

    Article Google Scholar

  158. Pro, B. et al. Three-year survival results from an ongoing phase 2 study of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood 122, 1809–1809 (2013).

    Article Google Scholar

  159. Chen, R. et al. Results from a pivotal phase II study of brentuximab vedotin (SGN-35) in patients with relapsed or refractory Hodgkin lymphoma (HL). J. Clin. Oncol. 29, 8031–8031 (2011).

    Article Google Scholar

  160. Younes, A. et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J. Clin. Oncol. 30, 2183 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  161. Pro, B. et al. Durable remissions with brentuximab vedotin (SGN-35): updated results of a phase II study in patients with relapsed or refractory systemic anaplastic large cell lymphoma (sALCL). J. Clin. Oncol. 29, 8032–8032 (2011).

    Article Google Scholar

  162. Pro, B. et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190–2196 (2012).

    Article CAS PubMed Google Scholar

  163. Horwitz, S. M. et al. Randomized phase 3 ALCANZA study of brentuximab vedotin vs physician’s choice in cutaneous T-cell lymphoma: final data. Blood Adv. 5, 5098–5106 (2021).

    Article PubMed Google Scholar

  164. Richardson, N. C. et al. FDA approval summary: brentuximab vedotin in first‐line treatment of peripheral T‐Cell lymphoma. Oncologist 24, e180 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  165. Straus, D. J. et al. Brentuximab vedotin with chemotherapy for stage III or IV classical Hodgkin lymphoma (ECHELON-1): 5-year update of an international, open-label, randomised, phase 3 trial. Lancet Haematol. 8, e410–e421 (2021).

    Article PubMed Google Scholar

  166. Shah, N. N. et al. Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr. Blood Cancer 62, 964–969 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  167. Lanza, F. et al. CD22 expression in b-cell acute lymphoblastic leukemia: biological significance and implications for inotuzumab therapy in adults. Cancers (Basel) 12, 303 (2020).

    Article CAS Google Scholar

  168. Kantarjian, H. M. et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long‐term survival follow‐up from the randomized, phase 3 INO‐VATE study. Cancer 125, 2474–2487 (2019).

    Article CAS PubMed Google Scholar

  169. Kantarjian, H. M. et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med. 375, 740–753 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  170. Turner, A. & Kjeldsberg, C. R. Hairy cell leukemia: a review. Medicine 57, 477–499 (1978).

    Article CAS PubMed Google Scholar

  171. Kreitman, R. J. & Pastan, I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin. Cancer Res. 17, 6398–6405 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  172. Cordone, I. et al. Diagnostic relevance of peripheral blood immunocytochemistry in hairy cell leukaemia. J. Clin. Pathol. 48, 955–960 (1995).

    Article CAS PubMed PubMed Central Google Scholar

  173. Babuŝíková, O., Tomova, A., Kusenda, J. & Gyarfas, J. Flow cytometry of peripheral blood and bone marrow cells from patients with hairy cell leukemia: phenotype of hairy cells, lymphocyte subsets and detection of minimal residual disease after treatment. Neoplasma 48, 350–357 (2001).

    PubMed Google Scholar

  174. Janus, A. & Robak, T. Moxetumomab pasudotox for the treatment of hairy cell leukemia. Expert Opin. Biol. Ther. 19, 501–508 (2019).

    Article CAS PubMed Google Scholar

  175. Kreitman, R. J. et al. Moxetumomab Pasudotox-Tdfk in heavily pretreated patients with relapsed/refractory hairy cell leukemia (HCL): long-term follow-up from the pivotal Phase 3 Trial. Blood 134, 2808–2808 (2019).

    Article Google Scholar

  176. Kreitman, R. J. et al. Moxetumomab pasudotox in heavily pre-treated patients with relapsed/refractory hairy cell leukemia (HCL): long-term follow-up from the pivotal trial. J. Hematol. Oncol. 14, 1–11 (2021).

    Article Google Scholar

  177. Biocodex’s, G. FDA new drug approvals in Q3 2018. Nat. Rev. Drug Discov. 17, 779 (2018).

    Article Google Scholar

  178. Deeks, E. D. Polatuzumab vedotin: first global approval. Drugs 79, 1467–1475 (2019).

    Article PubMed PubMed Central Google Scholar

  179. Zheng, B. et al. In vivo effects of targeting CD79b with antibodies and antibody-drug conjugates. Mol. Cancer Ther. 8, 2937–2946 (2009).

    Article CAS PubMed Google Scholar

  180. Pfeifer, M. et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. Leukemia 29, 1578–1586 (2015).

    Article CAS PubMed Google Scholar

  181. Urquhart, L. FDA new drug approvals in Q2 2019. Nat. Rev. Drug Discov. 18, 575–576 (2019).

    Article CAS PubMed Google Scholar

  182. Sehn, L. H. et al. Polatuzumab vedotin plus bendamustine and rituximab in relapsed/refractory diffuse large B-cell lymphoma: updated results of a phase Ib/II randomized study and preliminary results of a single-arm extension. Blood 136, 17–19 (2020).

    Article Google Scholar

  183. Seckinger, A. et al. Target expression, generation, preclinical activity, and pharmaco*kinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell 31, 396–410 (2017).

    Article CAS PubMed Google Scholar

  184. Lonial, S. et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 21, 207–221 (2020).

    Article CAS PubMed Google Scholar

  185. Jain, N. et al. Loncastuximab tesirine, an anti-CD19 antibody-drug conjugate, in relapsed/refractory B-cell acute lymphoblastic leukemia. Blood Adv. 4, 449–457 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  186. Zammarchi, F. et al. ADCT-402, a PBD dimer–containing antibody drug conjugate targeting CD19-expressing malignancies. Blood 131, 1094–1105 (2018).

    Article CAS PubMed Google Scholar

  187. Hartley, J. A. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin. Biol. Ther. 21, 931–943 (2021).

    Article CAS PubMed Google Scholar

  188. Hartley, J. A. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin. Investig. Drugs 20, 733–744 (2011).

    Article CAS PubMed Google Scholar

  189. Staben, L. R. et al. Systematic variation of pyrrolobenzodiazepine (PBD)-dimer payload physicochemical properties impacts efficacy and tolerability of the corresponding antibody–drug conjugates. J. Med. Chem. 63, 9603–9622 (2020).

    Article CAS PubMed Google Scholar

  190. Caimi, P. F. et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 22, 790–800 (2021).

    Article CAS PubMed Google Scholar

  191. Abraham, J. Trastuzumab emtansine in advanced HER2-positive breast cancer. Clin. Cancer Res. 13, 1648–1655 (2007).

    Google Scholar

  192. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article CAS PubMed Google Scholar

  193. Junttila, T. T. et al. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat. 128, 347–356 (2011).

    Article CAS PubMed Google Scholar

  194. Diéras, V. et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 18, 732–742 (2017).

    Article PubMed PubMed Central Google Scholar

  195. Blackwell, K. L. et al. Primary results from EMILIA, a phase III study of trastuzumab emtansine (T-DM1) versus capecitabine (X) and lapatinib (L) in HER2-positive locally advanced or metastatic breast cancer (MBC) previously treated with trastuzumab (T) and a taxane. J. Clin. Oncol. 30, LBA1–LBA1 (2012).

    Article Google Scholar

  196. Pondé, N. et al. Trastuzumab emtansine (T-DM1)-associated cardiotoxicity: pooled analysis in advanced HER2-positive breast cancer. Eur. J. Cancer 126, 65–73 (2020).

    Article PubMed Google Scholar

  197. Wedam, S. et al. FDA Approval summary: ado-trastuzumab emtansine for the adjuvant treatment of HER2-positive early breast cancer. Clin. Cancer Res. 26, 4180–4185 (2020).

    Article CAS PubMed Google Scholar

  198. Mamounas, E. et al. Adjuvant T-DM1 versus trastuzumab in patients with residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer: subgroup analyses from KATHERINE. Ann. Oncol. 32, 1005–1014 (2021).

    Article CAS PubMed Google Scholar

  199. Chang, E. et al. FDA approval summary: enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin. Cancer Res. 27, 922–927 (2021).

    Article CAS PubMed Google Scholar

  200. Challita-Eid, P. M. et al. Enfortumab vedotin antibody–drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 76, 3003–3013 (2016).

    Article CAS PubMed Google Scholar

  201. Liu, Y. et al. Role of Nectin‑4 protein in cancer. Int. J. Oncol. 59, 1–14 (2021).

    Article Google Scholar

  202. Heath, E. I. & Rosenberg, J. E. The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nat. Rev. Urol. 18, 93–103 (2021).

    Article PubMed Google Scholar

  203. Powles, T. et al. Primary results of EV-301: A phase III trial of enfortumab vedotin versus chemotherapy in patients with previously treated locally advanced or metastatic urothelial carcinoma. J. Clin. Oncol. 39, 393–393 (2021).

    Article Google Scholar

  204. Petrylak, D. P. et al. EV-301: Phase III study to evaluate enfortumab vedotin (EV) versus chemotherapy in patients with previously treated locally advanced or metastatic urothelial cancer (la/mUC). J. Clin. Oncol. 37, TPS497–TPS497 (2019).

    Article Google Scholar

  205. Evan, Y. Y. et al. Enfortumab vedotin after PD-1 or PD-L1 inhibitors in cisplatin-ineligible patients with advanced urothelial carcinoma (EV‑201): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 22, 872–882 (2021).

    Article Google Scholar

  206. sh*tara, K. et al. Discovery and development of trastuzumab deruxtecan and safety management for patients with HER2-positive gastric cancer. Gastric Cancer 24, 780–789 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  207. Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 382, 610–621 (2020).

    Article CAS PubMed Google Scholar

  208. Modi, S. et al. Updated results from DESTINY-breast01, a phase 2 trial of trastuzumab deruxtecan (T-DXd) in HER2 positive metastatic breast cancer. Cancer Res. 81, PD3-06. (2021).

    Article Google Scholar

  209. Cortés, J. et al. LBA1 - Trastuzumab deruxtecan (T-DXd) vs trastuzumab emtansine (T-DM1) in patients (Pts) with HER2+ metastatic breast cancer (mBC): Results of the randomized phase III DESTINY-Breast03 study. Ann. Oncol. 32, S1283–S1346 (2021).

    Article Google Scholar

  210. Cortés, J. et al. LBA1 Trastuzumab deruxtecan (T-DXd) vs trastuzumab emtansine (T-DM1) in patients (Pts) with HER2+ metastatic breast cancer (mBC): Results of the randomized phase III DESTINY-Breast03 study. Ann. Oncol. 32, S1287–S1288 (2021).

    Article Google Scholar

  211. Tolaney, S. et al. 328TiP Phase III study of trastuzumab deruxtecan (T-DXd) with or without pertuzumab vs a taxane, trastuzumab and pertuzumab in first-line (1L), human epidermal growth factor receptor 2–positive (HER2+) metastatic breast cancer (mBC): DESTINY-Breast09. Ann. Oncol. 32, S507–S508 (2021).

    Article Google Scholar

  212. Li, B. T. et al. Trastuzumab deruxtecan in HER2-mutant non–small-cell lung cancer. N. Engl. J. Med. 386, 241–251 (2022).

    Article CAS PubMed Google Scholar

  213. Cottin, V. Interstitial lung disease. Eur. Respir. Rev. 22, 26–32 (2013).

    Article PubMed Google Scholar

  214. Janjigian, Y. et al. 1500TiP A phase Ib/II, multicenter, open-label, dose-escalation and dose-expansion study evaluating trastuzumab deruxtecan (T-DXd; DS-8201) monotherapy and combinations in patients with HER2-overexpressing gastric cancer (DESTINY-Gastric03). Ann. Oncol. 31, S930–S931 (2020).

    Article Google Scholar

  215. Lipinski, M., Parks, D. R., Rouse, R. V. & Herzenberg, L. A. Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc. Natl Acad. Sci. 78, 5147–5150 (1981).

    Article CAS PubMed PubMed Central Google Scholar

  216. Rapani, E., Sacchetti, A., Corda, D. & Alberti, S. Human Trop‐2 is a tumor‐associated calcium signal transducer. Int. J. Cancer 76, 671–676 (1998).

    Article Google Scholar

  217. Wang, J. et al. Identification of Trop-2 as an oncogene and an attractive therapeutic target in colon cancers. Mol. Cancer Ther. 7, 280–285 (2008).

    Article CAS PubMed Google Scholar

  218. Zeng, P. et al. Impact of TROP2 expression on prognosis in solid tumors: a systematic review and meta-analysis. Sci. Rep. 6, 1–7 (2016).

    Article Google Scholar

  219. Perrone, E. et al. Sacituzumab govitecan, an antibody‐drug conjugate targeting trophoblast cell‐surface antigen 2, shows cytotoxic activity against poorly differentiated endometrial adenocarcinomas in vitro and in vivo. Mol. Oncol. 14, 645–656 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  220. Sahota, S. & Vahdat, L. T. Sacituzumab govitecan: an antibody–drug conjugate. Expert Opin. Biol. Ther. 17, 1027–1031 (2017).

    Article CAS PubMed Google Scholar

  221. Bardia, A. et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med. 384, 1529–1541 (2021).

    Article CAS PubMed Google Scholar

  222. Bardia, A. et al. LBA17 ASCENT: a randomized phase III study of sacituzumab govitecan (SG) vs treatment of physician’s choice (TPC) in patients (pts) with previously treated metastatic triple-negative breast cancer (mTNBC). Ann. Oncol. 31, S1149–S1150 (2020).

    Article Google Scholar

  223. O’Shaughnessy, J. et al. Assessment of sacituzumab govitecan (SG) versus treatment of physician’s choice (TPC) cohort by agent in the phase 3 ASCENT study of patients (pts) with metastatic triple-negative breast cancer (mTNBC). J. Clin. Oncol. 39, 1077–1077 (2021).

    Article Google Scholar

  224. Li, J., Wang, R. & Gao, J. Novel anticancer drugs approved in 2020. Drug Discov. Ther. 15, 44–47 (2021).

    Article CAS PubMed Google Scholar

  225. Kaplon, H. & Reichert, J. M. Antibodies to watch in 2021. MAbs 13, 1860476 (2021).

    Article PubMed PubMed Central Google Scholar

  226. Kitamura, N. et al. Current trends and future prospects of molecular targeted therapy in head and neck squamous cell carcinoma. Int. J. Mol. Sci. 22, 240 (2021).

    Article CAS Google Scholar

  227. Cognetti, D. M. et al. Results of a phase 2a, multicenter, open-label, study of RM-1929 photoimmunotherapy (PIT) in patients with locoregional, recurrent head and neck squamous cell carcinoma (rHNSCC). J. Clin. Oncol. 37, 6014–6014 (2019).

    Article Google Scholar

  228. Gillenwater, A. M. et al. RM-1929 photo-immunotherapy in patients with recurrent head and neck cancer: Results of a multicenter phase 2a open-label clinical trial. J. Clin. Oncol. 36, 6039–6039 (2018).

    Article Google Scholar

  229. Jiang, J. et al. Preclinical safety profile of disitamab vedotin: a novel anti-HER2 antibody conjugated with MMAE. Toxicol. Lett. 324, 30–37 (2020).

    Article CAS PubMed Google Scholar

  230. Xu, Y. et al. Phase I study of the recombinant humanized anti-HER2 monoclonal antibody-MMAE conjugate RC48-ADC in patients with HER2-positive advanced solid tumors. Gastric Cancer. 24, 913–925 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  231. Peng, Z. et al. A phase II study of efficacy and safety of RC48-ADC in patients with locally advanced or metastatic HER2-overexpressing gastric or gastroesophageal junction cancers. J. Clin. Oncol. 38, 4560–4560 (2020).

    Article Google Scholar

  232. Peng, Z. et al. Efficacy and safety of a novel anti-HER2 therapeutic antibody RC48 in patients with HER2-overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: a single-arm phase II study. Cancer Commun. 41, 1173–1182 (2021).

    Article Google Scholar

  233. Sheng, X. et al. An open-label, single-arm, multicenter, phase II study of RC48-ADC to evaluate the efficacy and safety of subjects with HER2 overexpressing locally advanced or metastatic urothelial cancer (RC48-C009). J. Clin. Oncol. 39, 4584–4584 (2021).

    Article Google Scholar

  234. Alley, S. C. et al. Tisotumab vedotin induces anti-tumor activity through MMAE-mediated, Fc-mediated, and Fab-mediated effector functions in vitro. Cancer Res. 79, 221–221 (2019).

    Article Google Scholar

  235. Liu, Y. et al. Tissue factor–activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy. Cancer Res. 71, 6492–6502 (2011).

    Article CAS PubMed Google Scholar

  236. Coleman, R. L. et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 22, 609–619 (2021).

    Article CAS PubMed Google Scholar

  237. De Bono, J. S. et al. Tisotumab vedotin in patients with advanced or metastatic solid tumours (InnovaTV 201): a first-in-human, multicentre, phase 1–2 trial. Lancet Oncol. 20, 383–393 (2019).

    Article PubMed Google Scholar

  238. Ab, O. et al. IMGN853, a folate receptor-α (FRα)–targeting antibody–drug conjugate, exhibits potent targeted antitumor activity against FRα-expressing tumors. Mol. Cancer Ther. 14, 1605–1613 (2015).

    Article CAS PubMed Google Scholar

  239. Moore, K. N. et al. FORWARD I (GOG 3011): A randomized phase 3 study to evaluate the safety and efficacy of mirvetuximab soravtansine (IMGN853) versus chemotherapy in adults with folate receptor alpha (FRα)-positive, platinum-resistant epithelial ovarian cancer (EOC), primary peritoneal cancer, or primary fallopian tube cancer. J. Clin. Oncol. 35, TPS5607–TPS5607 (2017).

    Article Google Scholar

  240. Moore, K. et al. FORWARD I (GOG 3011): A phase III study of mirvetuximab soravtansine, a folate receptor alpha (FRa)-targeting antibody-drug conjugate (ADC), versus chemotherapy in patients (pts) with platinum-resistant ovarian cancer (PROC). Ann. Oncol. 30, v403 (2019).

    Article Google Scholar

  241. Moore, K. N. et al. Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha–targeting antibody–drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a phase I expansion study. J. Clin. Oncol. 35, 1112 (2017).

    Article CAS PubMed Google Scholar

  242. O’Malley, D. M. et al. Phase Ib study of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol. Oncol. 157, 379–385 (2020).

    Article PubMed Google Scholar

  243. O’Malley, D. M. et al. Mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients (pts) with platinum-agnostic ovarian cancer: Final analysis. J. Clin. Oncol. 39, 5504–5504 (2021).

    Article Google Scholar

  244. Okajima, D. et al. Datopotamab deruxtecan, a novel TROP2-directed antibody–drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells. Mol. Cancer Ther. 20, 2329–2340 (2021).

    Article CAS PubMed Google Scholar

  245. Spira, A. et al. OA03. 03 Datopotamab deruxtecan (Dato-DXd; DS-1062), a TROP2 ADC, in patients with advanced NSCLC: updated results of TROPION-PanTumor01 phase 1 study. J. Thorac. Oncol. 16, S106–S107 (2021).

    Article Google Scholar

  246. Shimizu, T. et al. O2-1 Datopotamab Deruxtecan (Dato-DXd; DS-1062), a TROP2 ADC, in patients with advanced NSCLC: Updated results of TROPION-PanTumor01 phase 1 study. Ann. Oncol. 32, S285 (2021).

    Article Google Scholar

  247. Yoh, K. et al. A randomized, phase 3 study of datopotamab deruxtecan (Dato-DXd; DS-1062) versus docetaxel in previously treated advanced or metastatic non-small cell lung cancer (NSCLC) without actionable genomic alterations (TROPION-Lung01). J. Clin. Oncol. 39, TPS9127–TPS9127 (2021).

    Article Google Scholar

  248. Zhang, X. et al. CEACAM5 stimulates the progression of non-small-cell lung cancer by promoting cell proliferation and migration. J. Int. Med. Res. 48, 0300060520959478 (2020).

    CAS PubMed Central Google Scholar

  249. Decary, S. et al. Preclinical activity of SAR408701: a novel anti-CEACAM5–maytansinoid antibody–drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin. Cancer Res. 26, 6589–6599 (2020).

    Article CAS PubMed Google Scholar

  250. Gazzah, A. et al. Efficacy and safety of the antibody-drug conjugate (ADC) SAR408701 in patients (pts) with non-squamous non-small cell lung cancer (NSQ NSCLC) expressing carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). J. Clin. Oncol. 38, 9505–9505 (2020).

    Article Google Scholar

  251. Guo, J. et al. Characterization and higher-order structure assessment of an interchain cysteine-based ADC: impact of drug loading and distribution on the mechanism of aggregation. Bioconjug. Chem. 27, 604–615 (2016).

    Article CAS PubMed Google Scholar

  252. Malik, P., Phipps, C., Edginton, A. & Blay, J. Pharmaco*kinetic considerations for antibody-drug conjugates against cancer. Pharm. Res. 34, 2579–2595 (2017).

    Article CAS PubMed Google Scholar

  253. Hamblett, K. J. et al. Altering antibody–drug conjugate binding to the neonatal Fc receptor impacts efficacy and tolerability. Mol. Pharm. 13, 2387–2396 (2016).

    Article CAS PubMed Google Scholar

  254. Mahalingaiah, P. K. et al. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol. Ther. 200, 110–125 (2019).

    Article CAS PubMed Google Scholar

  255. Khera, E. & Thurber, G. M. Pharmaco*kinetic and immunological considerations for expanding the therapeutic window of next-generation antibody–drug conjugates. Biodrugs 32, 465–480 (2018).

    Article PubMed Google Scholar

  256. Mecklenburg, L. A brief introduction to antibody–drug conjugates for toxicologic pathologists. Toxicol. Pathol. 46, 746–752 (2018).

    Article CAS PubMed Google Scholar

  257. Hackshaw, M. D. et al. Incidence of pneumonitis/interstitial lung disease induced by HER2-targeting therapy for HER2-positive metastatic breast cancer. Breast Cancer Res. Treat. 183, 23–39 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  258. Powell, C. et al. 289P Risk factors for interstitial lung disease in patients treated with trastuzumab deruxtecan from two interventional studies. Ann. Oncol. 31, S357–S358 (2020).

    Article Google Scholar

  259. Tarantino, P. et al. Interstitial lung disease induced by anti-ERBB2 antibody-drug conjugates: a review. JAMA Oncol. 7, 1873–1881 (2021).

    Article PubMed Google Scholar

  260. Spira, A. et al. OA03.03 Datopotamab deruxtecan (Dato-DXd; DS-1062), a TROP2 ADC, in patients with advanced NSCLC: updated results of TROPION-PanTumor01 phase 1 study. J. Thorac. Oncol. 16, S106–S107 (2021).

    Article Google Scholar

  261. Jin, Y. et al. Stepping forward in antibody-drug conjugate development. Pharmacol. Ther. 229, 107917 (2021).

    Article PubMed Google Scholar

  262. Tumey, L. N. An Overview of the Current ADC Discovery Landscape. Antibody-Drug Conjugates 2078, 1–22 (2020).

    Article CAS Google Scholar

  263. Singh, A. P. & Shah, D. K. A “dual” cell-level systems PK-PD model to characterize the bystander effect of ADC. J. Pharm. Sci. 108, 2465–2475 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  264. Wu, S.-G. & Shih, J.-Y. Management of acquired resistance to EGFR TKI–targeted therapy in advanced non-small cell lung cancer. Mol. Cancer 17, 1–14 (2018).

    Article CAS Google Scholar

  265. Loganzo, F., Sung, M. & Gerber, H.-P. Mechanisms of resistance to antibody–drug conjugates. Mol. Cancer Ther. 15, 2825–2834 (2016).

    Article CAS PubMed Google Scholar

  266. Irie, H. et al. Acquired resistance to trastuzumab/pertuzumab or to T‐DM1 in vivo can be overcome by HER2 kinase inhibition with TAS0728. Cancer Sci. 111, 2123 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  267. Sipos, G. & Kuchler, K. Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. Curr. Drug Targets 7, 471–481 (2006).

    Article CAS PubMed Google Scholar

  268. Buongervino, S. N. et al. Antibody-drug conjugate efficacy in neuroblastoma-role of payload, resistance mechanisms, target density, and antibody internalization. Mol. Cancer Ther. 20, 2228–22239 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  269. Lee, Y. T., Tan, Y. J. & Oon, C. E. Molecular targeted therapy: treating cancer with specificity. Eur. J. Pharmacol. 834, 188–196 (2018).

    Article CAS PubMed Google Scholar

  270. Andreev, J. et al. Bispecific antibodies and antibody–drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol. Cancer Ther. 16, 681–693 (2017).

    Article CAS PubMed Google Scholar

  271. de Goeij, B. E. et al. Efficient payload delivery by a bispecific antibody–drug conjugate targeting HER2 and CD63. Mol. Cancer Ther. 15, 2688–2697 (2016).

    Article PubMed Google Scholar

  272. Tang, F. et al. One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody–drug conjugates. Org. Biomol. Chem. 14, 9501–9518 (2016).

    Article CAS PubMed Google Scholar

  273. Yamazaki, C. M. et al. Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat. Commun. 12, 1–13 (2021).

    Article Google Scholar

  274. Whalen, K. A. et al. Targeting the somatostatin receptor 2 with the miniaturized drug conjugate, PEN-221: a potent and novel therapeutic for the treatment of small cell lung cancer. Mol. Cancer Ther. 18, 1926–1936 (2019).

    Article CAS PubMed Google Scholar

  275. Dal Corso, A. et al. A non-internalizing antibody-drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo. J. Control. Release 264, 211–218 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  276. Tolcher, A. W. et al. A first-in-human study of mirzotamab clezutoclax as monotherapy and in combination with taxane therapy in relapsed/refractory solid tumors: Dose escalation results. J. Clin. Oncol. 39, 3015–3015 (2021).

    Article Google Scholar

Download references

Antibody drug conjugate: the “biological missile” for targeted cancer therapy (2024)
Top Articles
Latest Posts
Article information

Author: Kelle Weber

Last Updated:

Views: 6154

Rating: 4.2 / 5 (53 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Kelle Weber

Birthday: 2000-08-05

Address: 6796 Juan Square, Markfort, MN 58988

Phone: +8215934114615

Job: Hospitality Director

Hobby: tabletop games, Foreign language learning, Leather crafting, Horseback riding, Swimming, Knapping, Handball

Introduction: My name is Kelle Weber, I am a magnificent, enchanting, fair, joyous, light, determined, joyous person who loves writing and wants to share my knowledge and understanding with you.